
The Pool

Tutorial 1: Modifying a Simple Flow

When you start the Pool it will look something like this, a nice clean place to think.

Let’s start with an already-existing Flow (the Pool’s native way of “coding”).

Pull down the Flows palette, top center.

Click the saved button in the Tutorial box to open its drawer. 

Pull Frame_Draw_Time_+_Chart_+_Overlay into the Pool.

Click it once to open it. You can fling the palette back to the top; you won’t lose it and the
drawer will close. Click the Pulse button at the top of the Clock component to tell it to send
pulse messages out its primary outport, at its right.

You’ll notice that ports have slightly rounded tops and bottoms and can be clickable buttons,
indicated by a slight 3d roundedness. This Pulse button also can handle data flows along pipes
as both an inport and an outport; that’s indicated by a notch on the left (for inport) and a bump
on the right (for outport).

The Pool follows the convention that data flows through pipes, and conceptually from left to
right through components and modules, though sometimes the pipes have to be routed to let
this happen. You can now see messages flowing along the pipe leaving the Clock outport and
entering the Send inport at the left of the frame draw time component.

Components are generally relatively simple sources or operators we can use in flows; there are
several in the Components palette at the bottom of the Pool. The frame draw component
samples how long it takes the Pool program to draw the image you’re looking at: one frame in
its real-time animated display.

You could have just clicked its Send button, but doing that enough to generate data for our
charts would be tedious. The clock takes care of that for us by sending a time message out its
outport at certain servals (which can be changed by clicking the interval button).

Most components send specific types of messages out their outports—but sometimes the
type of message or contents of the messages don’t matter. Send (and other clickable) buttons
generally respond to any incoming message by just doing what they would have done had you
clicked them.

Click the tools button, lower left on the FPS module to open its tool drawer.

Modules do significantly more work than components, or need more space for displays or
controls. But their inports and outports work the same way.

Tools related to a module’s contents are often useful as ports, so they can be dragged from the
module’s drawer (or often the drawer of another module of the same type, to save time in
applying many tools). They can be dragged directly to the frame where they’ll stay, or
sometimes into the primary display space of the module to “try it on for size.”

Drag the Moving Average tool over the accumulating data—but before letting it go, drag it
away again. You’ll see the tool apply itself and show its work in the module’s display. You’ll also
see the port associated with this tool’s work appear on the left border of the module as an
outport, since it’s primarily creating data we may want to use downstream.

It is automatically removed if you decide you don’t want it and drag it out of the module’s
primary display area. But this time you do want it, so just let let go while you see the Moving
Average’s kernel and outport.

The incoming data is somewhat variable and ragged, but its moving average is easier to
interpret. That’s all we really want to deal with later in our flow, so let’s get it into the next chart. 

We pipe the data from our new Moving Average outport into the next chart by drawing a line
with the right mouse button from the outport to the inport where we want it to go.

We do this with a different button because the Pool has two primary purposes: creating and
experimenting with data, then later just using the results of our experiments or those of others.
When you use the usual left button you’re just using the flow—you don’t have to worry about
breaking it or unplugging something and wondering why it doesn’t work any more.

When you use the right button you’re creating or modifying a flow, so you can pipe things
together or unplug a pipe. You can break things—but you can also create things; the maker
process. This distinction may be a bit awkward at first, but it corrects for a significant flaw in
how we interact with computers that we don’t generally see in the physical world.

Imagine if every time you picked up a check or other financial instrument you had to be careful
not to touch the amount or other transaction-defining fields. In fact, people in finance have the
term “fat-fingered” (as in “I fat-fingered the amount, trying to move the form—what was it
again?”) It evolved for exactly this problem: it is possible to change the nature of many things
on a computer by mistake. Imagine if when driving a car you could accidentally detach the
steering wheel.

Making and using almost always employ different behaviors and tools in the physical world. By
bringing this practice into the Pool we bring the safety and subtly calmer sense that we can
move faster without breaking things. We also reinforce the feeling of making and focus needed
when making by using different behaviors: different fingers and actions.

The spikey incoming data probably settled down a bit while you read this, and the less-volatile
averaged chart on the right should show something like a plateau. (The Pool prototype is very
limited by Java’s drawing speeds, so the initial ramp you see on the left is showing how the
longer line in the first chart, then the additional line in the second chart made drawing each
frame take longer.)

We may need more time to do the next operations, so open the second chart’s tool drawer.
Find the Time Trim Window tool, and type 120 into its input field to increase the size of the time
window displayed in this module to two minutes.

Now that we have some time to experiment, pull up the Components palette on the lower right
to see a double-handful of other components we can build into flows.

All that drawing slows the prototype down—giving us a sample of longer frame-draw times. Let
it settle for a while longer at this higher-number plateau.

Now press function key F12 to toggle the palettes off entirely and you’ll see faster times.  

You’ve noticed the three alert level modules at the lower right. Let’s pipe them into the flow and
get them doing something we can pretend is useful for the purposes of this example.

Let’s say you can tolerate a moderate amount of complicated-drawing slowness because you
know the visual clarity and distinctions will make the system easier to learn, easier to use, and
impose lower misinterpretation risk on the experts using the system. And you respect your
users so much you’d rather spend a little more time yourself up front—just once during
development—than impose the extra effort and risk for every expert, every operation, for the
rest of their lives (or at least the life of your system).

But at some point the frame rate’s slow enough that the animation choppiness itself imposes
cognitive load, so you need a reminder to simplify the drawing or do some optimization.

A red alert might be a good way to catch your eye. But can we stay in this data-flow paradigm
and trip that alert without resorting to typing? More important, many smart people can’t code,
and there’s no reason to keep them from doing operations on at least some of their data.

And even coders conceive of many things spatially before they translate that into numbers and
code. Here the essence is high numbers means a long time and that choppy animation is bad,
low numbers are good, and there’s a transitional area that’s worth watching because things
might get bad if you’re keep doing what got you three from the low numbers.

In the right chart use your right mouse button (we’re acting as makers now, not users) to sweep
out a vertical range. Click where you want one boundary and drag vertically to where you want
the other. Let’s put the middle range around beginning of our sample, leaving the longest times
above and the shortest times below. Don’t worry if you miss at first: you can always click to
remove the ranges (and their outports), or right-drag either boundary.

Notice that the ranges and ports are very distinct, quiet colors but without cultural meaning yet:
we don’t want to assume high numbers are good or bad yet: that’s a meaning assignment that
changes when we use the chart for different purposes. But we do want to subtly reinforce the
high/mid/low parts of the range—especially since splitting things into three ranges is a very
common act (think Goldilocks’ bears’ too hot, too cold, and just right).

There’s no color key—generally a mistake in common information visualization. But we’re
building a tool that will be used over and over, so it doesn’t want to be too visually cluttered
and can stand a tiny bit of training, especially if it’s quick, sure, memorable, and almost fun.

Here high numbers are in the sky blue range, low numbers earth brown, and the middle ones
are in the tree green range.

That conceptual-to-real-world mapping one of the hundreds of Cognitive Engineering
principles that guide the design of tools in the Pool. “One sentence training” is likely to be
remembered years later, because it ties meaningful distinctions people already know (sky is up)
to what would otherwise be temporary data distinctions that might need to be re-learned every
time (“what color are high number again?”) This process is known as embellishment or deep
processing in the memory literature: tying new information to things already in memory; called
metaphors in the Psycholinguistics literature when the structure of what’s already in memory
informs and helps organize the new information.

This becomes especially important when data elements are “painted” with colors in one view,
and reorganized in another, but that’s the topic of another example. The process is called
bushing and linking in the information visualization literature.

Let’s do that re-mapping of data-space high/mid/low colors into culturally-meaningful red=bad,
amber=warning, green=good colors with a couple more pipes, and get our red alert display
working. Right-draw a pipe from the big range outport to the small, closed top/red Alarm
module. (Piping to a closed module automatically connects to its stdin port: the usual inport
that almost all modules have).

Connect the middle, green outport to our Warning module, and figuring out how to get the
green one to light up where all systems are go is left as an exercise for the reader…

Play with the Pool’s draw complexity input signal to trip the alerts: remember F12 turns on and
off the display of the palettes, and revealing the complicated contents of the Components
palette is a very high drawing-load task that trips our red alert module. Hide it to see amber.

These ports are a bit more sophisticated than the simple push-button ports that we saw at the
beginning of this example. There’s a special data type you see as a black message blip in the
pipes: it signals “no data.” The chart ranges send it out when the charted data line leaves a
range; it’s used by the alert modules to turn off their fill color.

The Pool allows both strong typing (inports can refuse data coming from outports which send
types they can’t use) and no typing at all (like the stdin and stdout conventions of Unix tools).

Zoom out with the mouse wheel and try to re-create the flow outside the tutorial box. The clock
and frame draw time components are in the Component palette, and the charts and alert
modules are in the Viewers palette.

